عرض بسيط للتسجيلة

المؤلفDegerli, Aysen
المؤلفKiranyaz, Serkan
المؤلفChowdhury, Muhammad E. H.
المؤلفGabbouj, Moncef
تاريخ الإتاحة2023-04-17T06:57:43Z
تاريخ النشر2022
اسم المنشورProceedings - International Conference on Image Processing, ICIP
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICIP46576.2022.9897412
معرّف المصادر الموحدhttp://hdl.handle.net/10576/41960
الملخصCoronavirus disease 2019 (COVID-19) has been diagnosed automatically using Machine Learning algorithms over chest X-ray (CXR) images. However, most of the earlier studies used Deep Learning models over scarce datasets bearing the risk of overfitting. Additionally, previous studies have revealed the fact that deep networks are not reliable for classification since their decisions may originate from irrelevant areas on the CXRs. Therefore, in this study, we propose Operational Segmentation Network (OSegNet) that performs detection by segmenting COVID-19 pneumonia for a reliable diagnosis. To address the data scarcity encountered in training and especially in evaluation, this study extends the largest COVID-19 CXR dataset: QaTa-COV19 with 121, 378 CXRs including 9258 COVID-19 samples with their corresponding ground-truth segmentation masks that are publicly shared with the research community. Consequently, OSegNet has achieved a detection performance with the highest accuracy of 99.65% among the state-of-the-art deep models with 98.09% precision. 2022 IEEE.
راعي المشروعThis study was supported by the NSF-Business Finland Center for Visual and Decision Informatics (CVDI) Advanced Machine Learning for Industrial Applications (AMaLIA) project under Grant 4183/31/2021.
اللغةen
الناشرIEEE
الموضوعCOVID-19
Deep Learning
Machine Learning
SARS-CoV-2
العنوانOSEGNET: OPERATIONAL SEGMENTATION NETWORK FOR COVID-19 DETECTION USING CHEST X-RAY IMAGES
النوعConference Paper
الصفحات2306-2310
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة