OSEGNET: OPERATIONAL SEGMENTATION NETWORK FOR COVID-19 DETECTION USING CHEST X-RAY IMAGES
المؤلف | Degerli, Aysen |
المؤلف | Kiranyaz, Serkan |
المؤلف | Chowdhury, Muhammad E. H. |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2023-04-17T06:57:43Z |
تاريخ النشر | 2022 |
اسم المنشور | Proceedings - International Conference on Image Processing, ICIP |
المصدر | Scopus |
الملخص | Coronavirus disease 2019 (COVID-19) has been diagnosed automatically using Machine Learning algorithms over chest X-ray (CXR) images. However, most of the earlier studies used Deep Learning models over scarce datasets bearing the risk of overfitting. Additionally, previous studies have revealed the fact that deep networks are not reliable for classification since their decisions may originate from irrelevant areas on the CXRs. Therefore, in this study, we propose Operational Segmentation Network (OSegNet) that performs detection by segmenting COVID-19 pneumonia for a reliable diagnosis. To address the data scarcity encountered in training and especially in evaluation, this study extends the largest COVID-19 CXR dataset: QaTa-COV19 with 121, 378 CXRs including 9258 COVID-19 samples with their corresponding ground-truth segmentation masks that are publicly shared with the research community. Consequently, OSegNet has achieved a detection performance with the highest accuracy of 99.65% among the state-of-the-art deep models with 98.09% precision. 2022 IEEE. |
راعي المشروع | This study was supported by the NSF-Business Finland Center for Visual and Decision Informatics (CVDI) Advanced Machine Learning for Industrial Applications (AMaLIA) project under Grant 4183/31/2021. |
اللغة | en |
الناشر | IEEE |
الموضوع | COVID-19 Deep Learning Machine Learning SARS-CoV-2 |
النوع | Conference Paper |
الصفحات | 2306-2310 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
أبحاث فيروس كورونا المستجد (كوفيد-19) [835 items ]
-
الهندسة الكهربائية [2649 items ]