• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Motion Artifacts Correction from EEG and fNIRS Signals Using Novel Multiresolution Analysis

    Thumbnail
    View/Open
    Robust_Peak_Detection_for_Holter_ECGs_by_Self-Organized_Operational_Neural_Networks.pdf (2.009Mb)
    Motion_Artifacts_Correction_From_EEG_and_fNIRS_Signals_Using_Novel_Multiresolution_Analysis.pdf (2.614Mb)
    Date
    2022
    Author
    Hossain, Md. Shafayet
    Reaz, Mamun Bin Ibne
    Chowdhury, Muhammad E. H.
    Ali, Sawal H. M.
    Bakar, Ahmad Ashrif A.
    Kiranyaz, Serkan
    Khandakar, Amith
    Alhatou, Mohammed
    Habib, Rumana
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Physiological signal measurement and processing are increasingly becoming popular in the ambulatory setting as the hospital-centric treatment is moving towards wearable and ubiquitous monitoring. Most of the physiological signals are highly susceptible to various types of noises, especially movement artifacts. The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals are no exception to motion artifacts, which become prominent in the ambulatory setting. Since successful detection of various neurological disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove motion artifacts from these two signal modalities using reliable and robust methods. This paper proposes three novel multiresolution analysis techniques: i) Variational mode decomposition (VMD), ii) VMD in combination with principal component analysis (VMD-PCA), and iii) VMD in combination with canonical correlation analysis (VMD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these novel techniques is validated by computing the difference in the signal to noise ratio ( $\Delta SNR$ ) and percentage reduction in motion artifacts ( $\eta$ ). Among the three proposed novel methods, VMD-CCA decomposed with 15 intrinsic mode functions (IMFs) has shown the best denoising performance for EEG signals producing an average $\Delta SNR$ and $\eta $ values of 23.81 dB and 57.01%, respectively for all 23 EEG recordings. On the other hand, for the available 16 fNIRS recordings, VMD-CCA decomposed with 10 IMFs produced an average $\Delta SNR$ and $\eta $ values of 15.97 dB and 39.01%, respectively. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2022.3159155
    http://hdl.handle.net/10576/41968
    Collections
    • Electrical Engineering [‎2822‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video