• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A planar ultrawideband patch antenna array for microwave breast tumor detection

    Thumbnail
    View/Open
    materials-13-04918.pdf (6.342Mb)
    Date
    2020
    Author
    Hossain, Amran
    Islam, Mohammad T.
    Islam, Md. T.
    Chowdhury, Muhammad E. H.
    Rmili, Hatem
    Samsuzzaman, Md.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this paper, a compact planar ultrawideband (UWB) antenna and an antenna array setup for microwave breast imaging are presented. The proposed antenna is constructed with a slotted semicircular-shaped patch and partial trapezoidal ground. It is compact in dimension: 0.30λ × 0.31λ × 0.011λ, where λ is the wavelength of the lowest operating frequency. For design purposes, several parameters are assumed and optimized to achieve better performance. The prototype is applied in the breast imaging scheme over the UWB frequency range 3.10–10.60 GHz. However, the antenna achieves an operating bandwidth of 8.70 GHz (2.30–11.00 GHz) for the reflection coefficient under–10 dB with decent impedance matching, 5.80 dBi of maximum gain with steady radiation pattern. The antenna provides a fidelity factor (FF) of 82% and 81% for face-to-face and side-by-side setups, respectively, which specifies the directionality and minor variation of the received pulses. The antenna is fabricated and measured to evaluate the antenna characteristics. A 16-antenna array-based configuration is considered to measure the backscattering signal of the breast phantom where one antenna acts as transmitter, and 15 of them receive the scattered signals. The data is taken in both the configuration of the phantom with and without the tumor inside. Later, the Iteratively Corrected Delay and Sum (IC–DAS) image reconstructed algorithm was used to identify the tumor in the breast phantom. Finally, the reconstructed images from the analysis and processing of the backscattering signal by the algorithm are illustrated to verify the imaging performance.
    DOI/handle
    http://dx.doi.org/10.3390/ma13214918
    http://hdl.handle.net/10576/41996
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video