• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A predictive model for the assessment of the temperature polarization effect in direct contact membrane distillation desalination of high salinity feed

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-05
    Author
    Manawi, Yehia M.
    Khraisheh, Majeda A.M.M.
    Fard, Ahmad Kayvani
    Benyahia, Farid
    Adham, Samer
    Metadata
    Show full item record
    Abstract
    Temperature polarization is one of the major sources responsible for flux drop in membrane distillation systems due to the reduction in the driving force across the membrane. The present study offers a predictive model developed for the estimation of the temperature polarization coefficient across the membrane taking into consideration the simultaneous heat and mass transfer phenomena. The uniqueness of the developed model is its ability to predict the intermediate temperatures (temperatures along the flow path of the membrane sheet) which can be used to estimate the local flux and local temperature polarization coefficients as opposed to the methods used by others which estimate the TPC, using the average bulk temperatures, resulting in a tool that enables the estimation of the temperature polarization coefficient (TPC) at different operating conditions. It was found that higher feed temperatures result in higher temperature polarization effect and hence a lower TPC. It was also observed that TPC increases with feed flow rate. The highest TPC value of 0.82 was achieved for a flow rate of 3. L/min and a feed-permeate temperature system of 60-20. The use of flow promoters further enhances the performance of the DCMD system and was reflected on increasing the TPC values (0.66 for a spacer filled channel compared to 0.47 for a spacer free operation) at 1.5. L/min flow condition with 70-30 temperature system. The axially integrated local flux values predicted by the model were in good agreement with the experimentally measured fluxes.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2014.02.028
    http://hdl.handle.net/10576/4204
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video