• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep learning-based middle cerebral artery blood flow abnormality detection using flow velocity waveform derived from transcranial Doppler ultrasound

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1746809423003154-main.pdf (4.522Mb)
    التاريخ
    2023-03-29
    المؤلف
    Kanchon, Kanti Podder
    Chowdhury, Muhammad E.H.
    Al-Maadeed, Somaya
    Nasrin Nisha, Naima
    Mahmud, Sakib
    Hamadelneil, Fatema
    Almkhlef, Taif
    Aljofairi, Hind
    Mushtak, Adam
    Khandakar, Amith
    Zughaier, Susu
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Since the brain is unlike any other organ in that it cannot store energy and has a high metabolic demand, constant blood flow is essential for healthy brain function. The maximum flow velocity waveform that is produced by transcranial doppler echo ultrasonography has different qualities for a healthy subject and a critically ill patient with conditions such as intraparenchymal or subarachnoid hemorrhage, hydrocephalus, or traumatic brain injury. Depending on the degree of the injury, the symptoms of traumatic brain damage can present themselves right away or not until days or weeks later. To aid in the early and accurate detection of patients with severe brain conditions, a classification system is proposedthat can distinguish between healthy control and patient utilizing the maximum flow velocity waveform derived from Transcranial doppler ultrasound. In this research, we manually labelled the data to remove mediocre and corrupted signals and pre-processed low-quality signals into high-quality ones using a Cycle Generative Adversarial Network (CycleGAN). This study proposes a two-stream deep learning model, DopplerNet2+, based on a Self-organized Operational Neural Network (Self-ONN), which achieves an overall accuracy, precision, recall, sensitivity, f1 score, and specificity of 99.45%, 99.45%, 99.45%, and 99.37% for the classification issue. DopplerNet2+ has a better area under the curve (AUC) of 1.00 and a better Kolmogorov-Smirnov (KS) statistic of 0.996 at the 0.812 thresholds than 11 other Self-ONN models trained with different inputs. The results show that the proposed models can successfully carry out the targeted classification task.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S1746809423003154
    DOI/handle
    http://dx.doi.org/10.1016/j.bspc.2023.104882
    http://hdl.handle.net/10576/42192
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video