• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Feasibility of tracking involuntary head movement for MRI using a coil as a magnetic dipole in a time-varying gradient

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Bhuiyan, E.H.
    Chowdhury, M.E.H.
    Glover, P.M.
    Metadata
    Show full item record
    Abstract
    Accurate tracking involuntary head movements is fairly a challenging problem in MR imaging of the brain. Though there are few techniques available to monitor the head movement of the subject for a prospective motion correction, it is still an unsolved problem in MRI. In this theoretical study, we aim to describe an analytical investigation to track head movement inside an MR scanner by calculating the change in induced voltage in the head-mounted coils during the execution of time-varying gradients. We derive an expression to calculate the change in induced voltage in a coil placed in a time-varying gradient. We also derive a general equation to investigate the changes in the induced voltage in a set of coils mounted onto the head for the planar position and orientation of the coils. Each coil is considered as a magnetic dipole with location and sensitivity vectors. The changes of the vectors can track the head movement in the MR scanner by measuring the changes in the induced voltage in the coils. The dipole concept is valid for a wide range of coils. The changes in induced voltage in the coils are linear due to small changes in pose of the head. Movement parameters are estimated from the induced voltage changes. If the random noise voltage is less than 100 μV, it does not significantly affect movement parameters because the change in induced voltage in the coils dominates over the small noise voltage. This method and array of the coils may provide a real-life solution to the long-standing problem of head motion during MRI.
    DOI/handle
    http://dx.doi.org/10.1016/j.mri.2023.03.021
    http://hdl.handle.net/10576/42786
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video