• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014-02
    Author
    Sadough Vanini, Z.N.
    Khorasani, K.
    Meskin, N.
    Metadata
    Show full item record
    Abstract
    In this paper, a fault detection and isolation (FDI) scheme for an aircraft jet engine is developed. The proposed FDI system is based on the multiple model approach and utilizes dynamic neural networks (DNNs) to accomplish this goal. Towards this end, multiple DNNs are constructed to learn the nonlinear dynamics of the aircraft jet engine. Each DNN corresponds to a specific operating mode of the healthy engine or the faulty condition of the jet engine. Using residuals obtained by comparing each network output with the measured jet engine output and by invoking a properly selected threshold for each network, reliable criteria are established for detecting and isolating faults in the jet engine components. The fault diagnosis task consists of determining the time as well as the location of a fault occurrence subject to presence of unmodeled dynamics, disturbances, and measurement noise. Simulation results presented demonstrate and illustrate the effectiveness of our proposed dynamic neural network-based FDI strategy.
    DOI/handle
    http://dx.doi.org/10.1016/j.ins.2013.05.032
    http://hdl.handle.net/10576/4279
    Collections
    • Electrical Engineering [‎2110‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video