• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Face Mask Detection in Smart Cities Using Deep and Transfer Learning: Lessons Learned from the COVID-19 Pandemic

    Thumbnail
    عرض / فتح
    systems-11-00107-with-cover.pdf (1.147Mb)
    التاريخ
    2023-02-17
    المؤلف
    Himeur, Yassine
    Al-Maadeed, Somaya
    Varlamis, Iraklis
    Al-Maadeed, Noor
    Abualsaud, Khalid
    Mohamed, Amr
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    After different consecutive waves, the pandemic phase of Coronavirus disease 2019 does not look to be ending soon for most countries across the world. To slow the spread of the COVID-19 virus, several measures have been adopted since the start of the outbreak, including wearing face masks and maintaining social distancing. Ensuring safety in public areas of smart cities requires modern technologies, such as deep learning and deep transfer learning, and computer vision for automatic face mask detection and accurate control of whether people wear masks correctly. This paper reviews the progress in face mask detection research, emphasizing deep learning and deep transfer learning techniques. Existing face mask detection datasets are first described and discussed before presenting recent advances to all the related processing stages using a well-defined taxonomy, the nature of object detectors and Convolutional Neural Network architectures employed and their complexity, and the different deep learning techniques that have been applied so far. Moving on, benchmarking results are summarized, and discussions regarding the limitations of datasets and methodologies are provided. Last but not least, future research directions are discussed in detail.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149232389&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/systems11020107
    http://hdl.handle.net/10576/43061
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎849‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video