عرض بسيط للتسجيلة

المؤلفAbo-Eleneen, Amr
المؤلفMohamed, Amr
تاريخ الإتاحة2023-05-23T08:05:24Z
تاريخ النشر2021-06-28
اسم المنشور2021 International Wireless Communications and Mobile Computing, IWCMC 2021
المعرّفhttp://dx.doi.org/10.1109/IWCMC51323.2021.9498842
الاقتباسAbo-eleneen, A., & Mohamed, A. (2021, June). Mmrl: A multi-modal reinforcement learning technique for energy-efficient medical iot systems. In 2021 International Wireless Communications and Mobile Computing (IWCMC) (pp. 2026-2031). IEEE.
الترقيم الدولي الموحد للكتاب 978-1-7281-8616-0
الرقم المعياري الدولي للكتاب2376-6492
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125648260&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/43341
الملخصThe Internet of Medical Things (IoMT) couples the rapid growth of Internet of things (IoT) technologies with smart health systems, leveraging wireless battery-operated devices for remote health monitoring. Since 2019, a surge in the number of COVID-19 patients has increased rapidly, leading to increased strain on hospital resources and leaving some urgent patients behind. This is substantial cause to transform interactive health treatment into intelligent healthcare using edge computing and artificial intelligence (AI) techniques. However, running sophisticated AI-based edge computing techniques on IoT devices with limited battery is not sustainable. Hence, addressing the trade-off between energy-efficiency and smart AI techniques is imperative to maximize the device's lifetime. This paper proposes a Multi-Modal Reinforcement Learning (MMRL) algorithm that will help maximize the IoT device's lifetime using adaptive data compression, energy-efficient communication, and minimum latency, particularly for emergency events. The results showed a 500% longer battery life than the state-of-the-art algorithms in addition to high adaptability to different conditions.
راعي المشروعThis work was made possible by NPRP grant NPRP12S-0305-190231 from the Qatar National Research Fund (a member of Qatar Foundation).
اللغةen
الناشرIEEE
الموضوعEnergy efficient
IoT
Multi-modal
Reinforcement learning
العنوانMMRL: A Multi-Modal Reinforcement Learning Technique for Energy-efficient Medical IoT Systems
النوعConference Paper
الصفحات2026-2031
ESSN2376-6506
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة