• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Breaks in Municipal Drinking Water Linear Assets

    Thumbnail
    Date
    2021
    Author
    Karimian Farzad
    Kaddoura Khalid
    Zayed Tarek
    Hawari Alaa
    Moselhi Osama
    Metadata
    Show full item record
    Abstract
    Improper asset management practices increase the probability of water main failures due to inactive intervention actions. The annual number of breaks of each pipe segment is known as one of the most important criteria for the condition assessment of water pipelines. This metric is also considered one of the major performance measures in levels of service (LoS) studies. In an effort to maximize the benefits of historical data, this research utilized the evolutionary polynomial regression (EPR) method in determining the best mathematical expression for predicting water pipeline failures. The prediction model was trained and tested on the city of Montreal water network. After determining the best independent variables through the best subset regression, pipelines were clustered based on their attributes (length, diameter, age, and material). The majority of the models provided high R2 values, but the highest performing model's R2 was 89.35%. Further, a sensitivity analysis was also performed and showed that the most sensitive parameter was the diameter, and the most sensitive material type to age was ferrous material. The tools and stages performed in this research showed promising results in predicting the expected water main failures using four different asset attributes. Therefore, this research can be implemented in asset management best practices and in LoS performance measures to predict the number of water pipeline failures. To further improve the prediction model, additional explanatory variables could be considered along with leveraging multiple artificial intelligence tools. 2020 American Society of Civil Engineers.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000511
    http://hdl.handle.net/10576/43380
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video