• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient bivariate EWMA charts for monitoring process dispersion

    Thumbnail
    Date
    2020
    Author
    Osei-Aning, Richard
    Abbasi, Saddam Akber
    Metadata
    Show full item record
    Abstract
    To ensure high quality standards of a process, the application of control charts to monitor process performance has become a regular routine. Multivariate charts are a preferred choice in the presence of more than one process variable. In this article, we proposed a set of bivariate exponentially weighted moving average (EWMA) charts for monitoring the process dispersion. These charts are formulated based on a variety of dispersion statistics considering normal and non-normal bivariate parent distributions. The performance of the different bivariate EWMA dispersion charts is evaluated and compared using the average run length and extra quadratic loss criteria. For the bivariate normal process, the comparisons revealed that the EWMA chart based on the maximum standard deviation (SMAXE) was the most efficient chart when the shift occurred in one quality variable. It also performed well when the sample size is small and the shift occurred in both quality variables. The EWMA chart based on the maximum average absolute deviation from median (MDMAXE) performed better than the other charts in most situations when the shift occurred in the covariance matrix for the bivariate non-normal processes. An illustrative example is also presented to show the working of the charts.
    DOI/handle
    http://dx.doi.org/10.1002/qre.2569
    http://hdl.handle.net/10576/43484
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video