• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New efficient exponentially weighted moving average variability charts based on auxiliary information

    Thumbnail
    Date
    2020
    Author
    Abbasi, Saddam Akber
    Riaz, Muhammad
    Ahmad, Shabbir
    Sanusi, Ridwan A.
    Abid, Muhammad
    Metadata
    Show full item record
    Abstract
    Control chart is a well-known tool for monitoring the performance of an ongoing process. The variability of a process is an important parameter that may deteriorate the process performance if it is not taken care on time. In this study, we have proposed some new auxiliary information-based exponentially weighted moving average (EWMA) charts for improved monitoring of process variability. We employed auxiliary information in some useful forms including ratio, regression, power ratio, ratio exponential, ratio regression, power ratio regression, and ratio exponential regression estimators. The performance of the newly developed charts is evaluated and compared with some existing charts (viz., the NEWMA, the Improved R, the Synthetic R, and the classical R charts), using some useful measures such as average run length (ARL), extra quadratic loss, and relative ARL. The comparative analysis revealed that the proposed charts outperform their counterparts, especially when there is a strong relationship between the study and the auxiliary variables. Finally, an illustrative example is provided for the monitoring of air quality data
    DOI/handle
    http://dx.doi.org/10.1002/qre.2692
    http://hdl.handle.net/10576/43485
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video