• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    One-Sided and Two One-Sided Multivariate Homogeneously Weighted Moving Charts for Monitoring Process Mean

    Thumbnail
    View/Open
    One-Sided_and_Two_One-Sided_Multivariate_Homogeneously_Weighted_Moving_Charts_for_Monitoring_Process_Mean.pdf (3.218Mb)
    Date
    2021
    Author
    Adegoke, Nurudeen A.
    Riaz, Muhammad
    Ganiyu, Khadijat Oladayo
    Abbasi, Saddam Akber
    Metadata
    Show full item record
    Abstract
    Multivariate memory-type control charts that use information from both the current and previous process observations have been proposed. They are designed to detect shifts in both upper and downward directions with equal precision when monitoring the process mean vector. The absence of directional sensitivity can limit the charts' application, particularly when users are interested in detecting variations in one direction than the other. This article proposes one-sided and two one-sided multivariate control charts for monitoring shifts in the process mean vector. The proposed charts are presented in the form of the multivariate homogeneously weighted moving average approach that yields efficient detection of shifts in the mean vector. We provide simulation studies under different shift sizes in the process mean vector and evaluate the performance of the proposed charts in terms of their run length properties. We compare the average run length (ARL) results of the charts with the conventional charts as well as the one-sided and two one-sided multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) charts. Our simulation results show that the proposed charts outperform the existing charts used for the same purpose, particularly when interest lies in detecting small shifts in the mean vector. We show how the charts can be designed to be robust to non-normal distributions and give a step-by-step implementation efficient application of the charts when their parameters are unknown and need to be estimated. Finally, an illustrative example is provided to show the application of the proposed charts. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3085349
    http://hdl.handle.net/10576/43512
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video