• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    One-Sided and Two One-Sided Multivariate Homogeneously Weighted Moving Charts for Monitoring Process Mean

    Thumbnail
    عرض / فتح
    One-Sided_and_Two_One-Sided_Multivariate_Homogeneously_Weighted_Moving_Charts_for_Monitoring_Process_Mean.pdf (3.218Mb)
    التاريخ
    2021
    المؤلف
    Adegoke, Nurudeen A.
    Riaz, Muhammad
    Ganiyu, Khadijat Oladayo
    Abbasi, Saddam Akber
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Multivariate memory-type control charts that use information from both the current and previous process observations have been proposed. They are designed to detect shifts in both upper and downward directions with equal precision when monitoring the process mean vector. The absence of directional sensitivity can limit the charts' application, particularly when users are interested in detecting variations in one direction than the other. This article proposes one-sided and two one-sided multivariate control charts for monitoring shifts in the process mean vector. The proposed charts are presented in the form of the multivariate homogeneously weighted moving average approach that yields efficient detection of shifts in the mean vector. We provide simulation studies under different shift sizes in the process mean vector and evaluate the performance of the proposed charts in terms of their run length properties. We compare the average run length (ARL) results of the charts with the conventional charts as well as the one-sided and two one-sided multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) charts. Our simulation results show that the proposed charts outperform the existing charts used for the same purpose, particularly when interest lies in detecting small shifts in the mean vector. We show how the charts can be designed to be robust to non-normal distributions and give a step-by-step implementation efficient application of the charts when their parameters are unknown and need to be estimated. Finally, an illustrative example is provided to show the application of the proposed charts. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3085349
    http://hdl.handle.net/10576/43512
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎810‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video