• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    New model for estimating geometric tortuosity of variably saturated porous media using 3D synchrotron microcomputed tomography imaging

    Thumbnail
    View/Open
    Soil Science Soc of Amer J - 2021 - Jarrar - New model for estimating geometric tortuosity of variably saturated porous.pdf (6.857Mb)
    Date
    2021
    Author
    Jarrar, Zaher A.
    Al-Raoush, Riyadh I.
    Hannun, Jamal A.
    Alshibli, Khalid A.
    Metadata
    Show full item record
    Abstract
    Tortuosity has a significantimpact on flow and transport characteristics of porous media and plays a major role in many applications such as enhanced oil recovery, contaminant transport in aquifers, and fuel cells. Most analytical and theoretical models for determining tortuosity have been developed for ideal systems with assumptions that might not be representative of natural porous media. In this paper, geometric tortuosity was directly determined from three-dimensional (3D) tomography images of natural unconsolidated sand packs with a wide range of porosity, saturation, grain size distribution, and morphology. One hundred and thirty natural unconsolidated sand packs were imaged using 3D monochromatic and pink-beam synchrotron microcomputed tomography imaging. Geometric tortuosity was directly determined from the 3D images using the centroids of the connected paths in the flow direction of the media, and multivariate nonlinear regression analysis was adopted to develop a simple practical model to predict tortuosity of variably saturated natural unconsolidated porous media. Wetting phase saturation was found to provide a good estimate of relative tortuosity with an (Formula presented.) value of.93, even with a porosity variation between 0.3 and 0.5 of the porous media systems. The proposed regression model was compared to theoretical and analytical models available in the literature and was found to provide better estimates of geometric tortuosity with an (Formula presented.) value of.9 and a RMSE value of 0.117. 2021 The Authors. Soil Science Society of America Journal published by Wiley Periodicals LLC on behalf of Soil Science Society of America
    DOI/handle
    http://dx.doi.org/10.1002/saj2.20289
    http://hdl.handle.net/10576/43856
    Collections
    • Civil and Environmental Engineering [‎867‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video