• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil & Architectural Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: A micromodel study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0032591020308433-main.pdf (4.275Mb)
    Date
    2021
    Author
    Nishad, Safna
    Al-Raoush, Riyadh I.
    Metadata
    Show full item record
    Abstract
    Clear understanding of pore-scale mechanisms that control transport and retention of colloids in porous media at different physicochemical conditions is critical to improve design and efficient cleanup methodologies of filter beds. The objective of this work was to investigate the impact of hydrophobicity, solution ionic strength, and pH on colloid retention mechanisms in single-phase and two-phase flow in porous media systems. A series of experiments were conducted using a geometrically representative micromodel. Hydrophilic and hydrophobic colloids were dispersed in water at different solution ionic strength and pH conditions. Findings indicate that hydrophilic colloids exhibit high filtration efficiency as the colloids interact attractively with other colloids and solid-water-interface irrespective of the solution chemistry. However, for hydrophobic colloids, changes in solution chemistry significantly increase colloid retention where the colloid interaction become attractive with the increase in ionic strength and decrease in pH values. Colloids attached to the collector surfaces mobilized by the strong capillary forces induced by the moving gas-water interface and transported along with the interface. However, hydrophilic colloids redeposited on gas-water-solid interfaces or thin water films because of their greater capillary potential. Therefore, greater filtration efficiency is achieved with the hydrophilic colloids compared to the hydrophobic colloids for which the efficiency can be improved by changing the solution chemistry. Moreover, the removal efficiency by the moving gas-water interface was observed to be more for hydrophobic colloids compared to hydrophilic colloids for which the efficiency can be improved by lowering the ionic strength or increasing the pH value. This study indicates that the coupled effects of solution chemistry and colloid hydrophobicity should be taken into account while investigating efficient filtration and cleaning practices for the filter beds. 2020 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.powtec.2020.08.086
    http://hdl.handle.net/10576/43858
    Collections
    • Civil & Architectural Engineering [‎581‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video