• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of CH4-CO2 replacement in hydrate-bearing sediments on S-wave velocity and electrical resistivity

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1875510020303607-main.pdf (3.936Mb)
    Date
    2020
    Author
    Jung, Jongwon
    Ryou, Jae Eun
    Al-Raoush, Riyadh I.
    Alshibli, Khalid
    Lee, Joo Yong
    Metadata
    Show full item record
    Abstract
    CH4-CO2 replacement has been considered as a method for methane production from hydrate-bearing sediments to maintain sediment stability. Sediment stability has been studied at both the particle scale and mesoscale. However, the shear stiffness of sediments has not yet been explored. Moreover, the effects of CO2 and CO2-N2 mixtures as injection fluids on sediment stability remain unclear. Thus, this study aimed to determine the variations in shear wave velocity and electrical resistivity during hydrate formation, CH4-CO2 replacement, and hydrate dissociation using two types of injecting fluids (CO2 and CO2-N2 mixture). The results demonstrated that hydrate-bearing sediment could maintain its stability during CH4-CO2 replacement by injecting CO2 or CO2-N2 mixture. Furthermore, injecting CO2-N2 mixture was more efficient for methane production than injecting CO2. The Results also revealed that injecting CO2-N2 mixture could lead to higher stability of sediments during CH4-CO2 replacement than injecting CO2, although the difference in sediment stability was small between the two cases. 2020 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.jngse.2020.103506
    http://hdl.handle.net/10576/43861
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Doubly dual nature of ammonium-based ionic liquids for methane hydrates probed by rocking-rig assembly 

      Tariq, Mohammad; Connor, Eihmear; Thompson, Jillian; Khraisheh, Majeda; Atilhan, Mert; Rooney, David... more authors ... less authors ( Royal Society of Chemistry , 2016 , Article)
      This work presents a systematic study of methane hydrate inhibition in the presence of five structurally variable ionic liquids (ILs) belonging to the ammonium family—viz., tetra-alkylammonium acetate (TMAA), choline ...
    • Thumbnail

      Dynamic 3D imaging of gas hydrate kinetics using synchrotron computed tomography 

      Jarrar, Zaher; Al-Raoush, Riyadh; Alshibli, Khalid; Jung, Jongwon ( EDP Sciences , 2020 , Conference)
      The availability of natural gas hydrates and the continuing increase in energy demand, motivated researchers to consider gas hydrates as a future source of energy. Fundamental understanding of hydrate dissociation kinetics ...
    • Thumbnail

      Experimental and DFT Approach on the Determination of Natural Gas Hydrate Equilibrium with the Use of Excess N2 and Choline Chloride Ionic Liquid as an Inhibitor 

      Tariq, Mohammad; Atilhan, Mert; Khraisheh, Majeda; Othman, Enas; Castier, Marcelo; García, Gregorio; Aparicio, Santiago; Tohidi, Bahman... more authors ... less authors ( American Chemical Society , 2016 , Article)
      This work presents the characterization of hydrate-forming conditions of a Qatari natural gas-type mixture, QNG-S1, obtained using two different experimental methods, namely, a benchtop reactor and a gas hydrate autoclave. ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video