• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DiSWOP: A novel measure for cell-level protein network analysis in localized proteomics image data

    Thumbnail
    Date
    2014
    Author
    Kovacheva, Violeta N.
    Khan, Adnan M.
    Khan, Michael
    Epstein, David B.A.
    Rajpoot, Nasir M.
    Metadata
    Show full item record
    Abstract
    Motivation: New bioimaging techniques have recently been proposed to visualize the colocation or interaction of several proteins within individual cells, displaying the heterogeneity of neighbouring cells within the same tissue specimen. Such techniques could hold the key to understanding complex biological systems such as the protein interactions involved in cancer. However, there is a need for new algorithmic approaches that analyze the large amounts of multi-tag bioimage data from cancerous and normal tissue specimens to begin to infer protein networks and unravel the cellular heterogeneity at a molecular level.Results: The proposed approach analyzes cell phenotypes in normal and cancerous colon tissue imaged using the robotically controlled Toponome Imaging System microscope. It involves segmenting the 4',6-diamidino-2-phenylindole- labelled image into cells and determining the cell phenotypes according to their protein-protein dependence profile. These were analyzed using two new measures, Difference in Sums of Weighted cO-dependence/Anti-co-dependence profiles (DiSWOP and DiSWAP) for overall co-expression and anti-co-expression, respectively. These novel quantities were extracted using 11 Toponome Imaging System image stacks from either cancerous or normal human colorectal specimens. This approach enables one to easily identify protein pairs that have significantly higher/lower co-expression levels in cancerous tissue samples when compared with normal colon tissue.
    DOI/handle
    http://dx.doi.org/10.1093/bioinformatics/btt676
    http://hdl.handle.net/10576/4395
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video