• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of fetal movement accelerometry through time-frequency features

    Thumbnail
    Date
    2014
    Author
    Layeghy, Siamak
    Azemi, Ghasem
    Colditz, Paul
    Boashash, Boualem
    Metadata
    Show full item record
    Abstract
    This paper presents a time-frequency approach for fetal movement monitoring which is based on classification of accelerometry signals collected from pregnant women's abdomen. Features extracted from time-frequency distribution of these signals were supplied into statistical analysis to generate feature-measure mixtures. Four various classes subjectively are recognized in accelerometry data by means of objective tools such as ultrasound sonography. These include strong and weak fetal movement, artefact, and background. Receiver operating characteristic analysis utilized to compute the performance of feature-measures for the comparison between various classes. Next, a feature selection applied to reduce the feature space dimension by means of principal component analysis. The selected feature-measures then employed in support vector machine classifiers to classify artefact and fetal movement in different subsets of available classes. The results indicate the fetal movement events are identified with an accuracy of 92.19%.
    DOI/handle
    http://dx.doi.org/10.1109/ICSPCS.2014.7021055
    http://hdl.handle.net/10576/4410
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video