Simulation study of Schottky contact based single Si wire solar cell
Abstract
We model single silicon nanowire (SiNW) solar cells with dissimilar work function metal contacts. Both short circuit current (ISC) and open circuit voltage (VOC) have been investigated. Effects of nanowire dimension, minority carrier lifetime, and contact metal work function difference are investigated. Both ISC and VOC increase with nanowire length before saturating due to minority carrier recombination. The saturation length is found to be approximately five times the diffusion length. The larger the contact work function difference, the more improved the solar cell characteristics. Large work function differences may also avoid need for any doping in axial p-i-n nanowire solar cells. Saturation in ISC as well as degradation in current density with length can be minimized by spreading the contacts along the length of the nanowire.
Collections
- GPC Research [499 items ]