• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S2352152X2200771X-main.pdf (8.439Mb)
    التاريخ
    2022
    المؤلف
    Almaita, Eyad; Alshkoor, Saleh; Abdelsalam, Emad; Almomani, Fares
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The present paper estimates for the first time the State of Charge (SoC) of a high capacity grid-scale lithium-ion battery storage system used to improve the power profile in a distribution network. The proposed long short-term memory (LSTM) neural network model can overcome the problems associated with the nonlinear battery model and adapt to the complexity and uncertainty of the estimation process. The accuracy of the developed model was compared with results obtained from Feed-Forward Neural Network (FFNN) topology and Deep-Feed-Forward Neural Network (DFFNN) topology under three different time series. The system was trained using real data from the Al-Manara PV power plant. The LSTM with learn-and-adapt-to-train-date properties, as well as the idea of "forget gate," shows exceptional ability to determine the SoC under various ID data. The LSTM properly calculated the SoC for all three-time models with a maximum standard error (MSE) of less than 0.62%, while the FFNN and DFFNN provided a fair estimate for the SoC with MSEs of 5.37 to 9.22% and 4.03 to 7.37%, respectively. The promising results can lead to excellent monitoring and control of battery management systems.
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2022.104761
    http://hdl.handle.net/10576/44769
    المجموعات
    • الهندسة الكيميائية [‎1272‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video