• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unanswered issues on decarbonizing the aviation industry through the development of sustainable aviation fuel from microalgae

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2023
    Author
    Rony, Zahidul Islam
    Mofijur, M.
    Hasan, M.M.
    Ahmed, S.F.
    Almomani, Fares
    Rasul, M.G.
    Jahirul, M.I.
    Loke Show, Pau
    Kalam, M.A.
    Mahlia, T.M.I.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Concerns have been raised about the effects of fossil fuel combustion on global warming and climate change. Fuel consumer behavior is also heavily influenced by factors such as fluctuating fuel prices and the need for a consistent and reliable fuel supply. Microalgae fuel is gaining popularity in the aviation industry as a potential source of energy diversification. Microalgae can grow in saltwater or wastewater, capture CO2 from the atmosphere and produce lipids without requiring a large amount of land. As a result, the production of oil from microalgae poses no threat to food availability. The low carbon footprint of microalgae-derived fuels has the potential to mitigate the impact of traditional aviation fuels derived from petroleum on climate change and global warming. Therefore, aviation fuels derived from microalgae have the potential to be a more environmentally friendly and sustainable alternative to conventional fuels. Gathering microalgal species with a high lipid content, drying them, and turning them into aviation fuel is an expensive process. The use of biofuels derived from microalgae in the aviation industry is still in its infancy, but there is room for growth. This study analyses the potential routes already researched, their drawbacks in implementation, and the many different conceptual approaches that can be used to produce sustainable aviation fuel from microalgal lipids. Microalgae species with fast-growing rates require less space and generate lipids that can be converted into biofuel without imperiling food security. The key challenges in algal-based aviation biofuel include decreased lipid content, harvesting expenses, and drying procedure that should be enhanced and optimized to increase process viability.
    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2022.126553
    http://hdl.handle.net/10576/44775
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video