• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2022
    المؤلف
    Ullah, Zahid
    Khan, Muzammil
    Naqvi, Salman Raza
    Khan, Muhammad Nouman Aslam
    Farooq, Wasif
    Anjum, Muhammad Waqas
    Yaqub, Muhammad Waqas
    AlMohamadi, Hamad
    Almomani, Fares
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This study presents an integrated hybrid framework of data-driven (cascade forward neural network (CFNN)), metaheuristic (artificial bee colony (ABC)), and a mechanistic modeling (Aspen simulation) approach for the biomass pyrolysis process for bio-oil production. We applied CFNN and an ABC to predict and optimize bio-oil yield. The CFNN model achieved high prediction performance with a correlation coefficient value of 0.95 and a root mean squared error value of 0.39. Furthermore, the CFNN-ABC derived optimum parameters were then validated using a mechanistic model of the pyrolysis process. The CFNN and Aspen simulation results were following the experimental results, with an average deviation of 5%. The feature importance showed that the internal information about biomass was more relevant than external factors for bio-oil yield. The partial dependence plots were developed to know the insights into the biomass pyrolysis process. This study presents a modeling and simulation platform for bio-oil production that can increase the waste-to-energy process and can be helpful for academia.
    DOI/handle
    http://dx.doi.org/10.1016/j.psep.2022.04.013
    http://hdl.handle.net/10576/44777
    المجموعات
    • الهندسة الكيميائية [‎1272‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video