• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF TRANSFORMER-BASED PREDICTION MODELS FOR REMAINING USEFUL LIFE

    View/Open
    Abdullah Elkawakjy_ OGS Approved Thesis.pdf (3.515Mb)
    Date
    2023-06
    Author
    ELKAWAKJY, ABDULLAH AMR
    Metadata
    Show full item record
    Abstract
    Remaining Useful Life (RUL) prediction is an essential task in predictive maintenance. This study aims to improve the performance of deep learning models for predicting the RUL of turbojet engines using the C-MAPSS dataset. The study proposes a sequence length-based dataset labeling method and evaluates pure transformer-based models on regression, with and without pertaining, and classification tasks. Different transformerbased ensemble models are also evaluated. The results show that a shorter sequence length provides better performance in general. Pretraining the model does not always improve performance. The study also shows a potential for transformer-based ensemble models with careful choice of combined models. The conversion of the RUL prediction task from regression to classification resulted in low accuracy. While the transformerbased architecture did not outperformstate-of-the-art hybrid models for RUL prediction, it outperformed simpler single models, such as MLP and SVR. The study concludes that, while the transformer model is state-of-the-art in natural language processing, hybrid deep learning models can outperform it in other applications such as RUL prediction.
    DOI/handle
    http://hdl.handle.net/10576/45067
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video