Show simple item record

AuthorYoon, Tae Kyung
AuthorNoh, Nam Jin
AuthorHan, Saerom
AuthorLee, Jongyeol
AuthorSon, Yowhan
Available date2016-06-21T13:29:05Z
Publication Date2014-08
Publication NameSoil Science Society of America Journal
ResourceScopus
CitationYoon, T. K., N. J. Noh, S. Han, J. Lee, and Y. Son. 2014. Soil Moisture Effects on Leaf Litter Decomposition and Soil Carbon Dioxide Efflux in Wetland and Upland Forests. Soil Science Society of America Journal 78:5 pp 1804-1816.
ISSN0361-5995
URIhttp://dx.doi.org/10.2136/sssaj2014.03.0094
URIhttp://hdl.handle.net/10576/4623
AbstractThis study examined, first, the response of litter decomposition and soil CO2 efflux (RS) to different soil moisture conditions and, second, the application of various litter decomposition functions in a wetland and upland forest dominated by Japanese alder. One upland site (US) and three wetland sites—a drained site (DS), poorly drained site (PDS), and surface saturated site (SSS)—were selected based on their variation in soil moisture conditions. Litter mass loss, as determined by a 4-yr litter bag incubation, was applied to Olson’s simple exponential function, Berg’s asymptotic function, and the rational function. The litter decomposition rate constant (yr−1), which was commonly obtained by the simple exponential function, was highest in PDS (1.181), followed by SSS (0.950), DS (0.922), and US (0.528). The limit value of the litter mass loss, as determined by the asymptotic function was higher in DS (91.7%) and PDS (89.0%) than in SSS (76.9%) and US (70.5%). The rational function provided the most precise fitting of the litter mass loss pattern with few parameters. Periodic saturation and the higher leaf N content in PDS may enhance litter decomposition compared to constant saturation or drained conditions. The RS (mg C m−2 h−1) values, periodically measured using a portable infrared gas analyzer, were ranked in the order US (12.6–355.1) = DS (7.1–324.0) > PDS (5.5–220.9) > SSS (0.0–153.8). More hydric conditions probably reduced the vegetation biomass (in contribution to autotrophic RS) and aerobic microbial activities (in contribution to heterotrophic RS). The RS temperature dependency (Q10) was little affected by soil moisture conditions, ranging from 2.48 to 2.69. It is concluded that the litter decomposition rate and RS were highest under periodic saturation and under lower soil moisture conditions, respectively.
Languageen
PublisherSoil Science Society of America
SubjectLeaf litter decomposition
Soil carbon dioxide efflux
Soil-moisture effects
TitleSoil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests
TypeArticle
Pagination1804-1816
Issue Number5
Volume Number78


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record