• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2023)
  • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    RSM Analysis for Optimum Content of Graphene Nanoplatelets for 3D-Printed Clay Strength

    Thumbnail
    View/Open
    058.pdf (543.9Kb)
    Date
    2023
    Author
    Mohsen, Mohamed
    Al-Diseet, Malak
    Abu Rumman, Mervat
    Taha, Ramzi
    Naji, Khalid
    Metadata
    Show full item record
    Abstract
    This study applies Response Surface Methodologies (RSM) methods to maximize 3D-Printed clay mechanical properties. Mixes containing different Graphene Nanoplatelets (GNPs) contents were printed and tested in compression and flexure. The Central Composite Design method was used by coding the mixes fabrication method, i.e. moulding and printing, and GNPs content as variables. The analysis showed that the mixes containing low GNPs content of 0.1 wt.% attained higher compressive and flexural strengths than those containing a higher content of 0.2 and 0.3 wt.%. The results also highlighted that GNPs' efficiency was better observed in the printed samples other than the moulded ones, indicating that the printing process contributed to a better and uniform dispersion of GNPs in the clay matrix. RSM analysis confirmed that the maximum flexural strength response could be obtained using a GNPs content of 0.1 wt.%. Furthermore, the desirability analysis showed that a maximum predicted flexural and compressive strength improvements of 21% and 36 % compared to the control mixes could be obtained, respectively. In summary, this study proposed the importance of using Nanofilaments in 3D printing activities to achieve the desired elements' mechanical properties.
    URI
    https://doi.org/10.29117/cic.2023.0058
    DOI/handle
    http://hdl.handle.net/10576/46761
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]
    • Theme 2: Advances in Infrastructure Sustainability, Renovation, and Monitoring [‎68‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video