• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز العلوم البيئية
  • مجموعة علوم الأرض
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز العلوم البيئية
  • مجموعة علوم الأرض
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterizing fracture toughness using machine learning

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2021-05-01
    المؤلف
    Alipour, M.
    Esatyana, E.
    Sakhaee-Pour, A.
    Sadooni, F. N.
    Al-Kuwari, H. A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The existing models for fracture toughness characterization based on nanoindentations that account for the fracture length are limited to simple (ideal) geometries that are absent in shales. The present study proposes two conceptual models to estimate the fracture length created by nanoindentations in shales. It also presents a workflow to apply the conceptual models and uses machine learning, enabling a systematic and automated analysis. The conceptual models assume that the induced fracture is in the first mode to determine the fracture toughness. In this study, fracture toughness is also determined by the energy method that relates the load-displacement hysteresis to the fracture toughness without restricting the fracture mode. The present study sheds light on the complexities of characterizing fracture toughness using nanoindentations and has applications in the petroleum industry. The conceptual models are appealing for formation characterization using small pieces, such as drill cuttings, when large samples (~2.5 cm) required for conventional tests are unavailable. The conceptual models have applications in estimating fracture toughness when the induced fracture patterns become more complex.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099147982&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.petrol.2020.108202
    http://hdl.handle.net/10576/47337
    المجموعات
    • مجموعة علوم الأرض [‎216‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video