• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel approach for handedness detection from off-line handwriting using fuzzy conceptual reduction

    Thumbnail
    View/Open
    Open Access Version of Record (1.476Mb)
    Date
    2016-01
    Author
    Al-Maadeed, Somaya
    Ferjani, Fethi
    Elloumi, Samir
    Jaoua, Ali
    Metadata
    Show full item record
    Abstract
    A challenging area of pattern recognition is the recognition of handwritten texts in different languages and the reduction of a volume of data to the greatest extent while preserving associations (or dependencies) between objects of the original data. Until now, only a few studies have been carried out in the area of dimensionality reduction for handedness detection from off-line handwriting textual data. Nevertheless, further investigating new techniques to reduce the large amount of processed data in this field is worthwhile. In this paper, we demonstrate that it is important to select only the most characterizing features from handwritings and reject all those that do not contribute effectively to the process of handwriting recognition. To achieve this goal, the proposed approach is based mainly on fuzzy conceptual reduction by applying the Lukasiewicz implication. Handwritten texts in both Arabic and English languages are considered in this study. To evaluate the effectiveness of our proposal approach, classification is carried out using a K-Nearest-Neighbors (K-NN) classifier using a database of 121 writers. We consider left/right handedness as parameters for the evaluation where we determine the recall/precision and F-measure of each writer. Then, we apply dimensionality reduction based on fuzzy conceptual reduction by using the Lukasiewicz implication. Our novel feature reduction method achieves a maximum reduction rate of 83.43 %, thus making the testing phase much faster. The proposed fuzzy conceptual reduction algorithm is able to reduce the feature vector dimension by 31.3 % compared to the original "best of all combined features" algorithm.
    DOI/handle
    http://dx.doi.org/10.1186/s13640-015-0097-y
    http://hdl.handle.net/10576/4735
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video