عرض بسيط للتسجيلة

المؤلفKazi, M.-K.
المؤلفEljack, F.
المؤلفMahdi, E.
تاريخ الإتاحة2023-09-10T17:35:33Z
تاريخ النشر2022
اسم المنشورComposite Structures
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1016/j.compstruct.2021.114858
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47362
الملخصThis paper examines the crashworthiness performance of composite rectangular tubes using experimental and artificial neural network (ANN) techniques. Based on experimentally obtained values of different crashworthiness parameters under various loading conditions, ANN models are constructed to identify the optimum cross-sectional aspect ratio of cotton fiber/epoxy laminated composite to achieve the targeted mechanical properties such as load carrying and energy absorption capability. Experimental findings show that axially and laterally loaded rectangular tubes were significantly affected by their aspect ratio. Furthermore, the predictions obtained from the ANN models showed consistency with the experimental data. In addition, the developed ANN captured the complicated nonlinear relationship among crashworthiness parameters to obtain insight into the practical design of the composite materials. 2021 The Author(s)
راعي المشروعThis paper was made possible by NPRP grant No 10-0205-170347 from the Qatar National Research Fund (a member of the Qatar Foundation).
اللغةen
الناشرElsevier Ltd
الموضوعArtificial neural network
Composite design
Crashworthiness
Fiber-reinforced composite
Rectangular tube
العنوانDesign of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques
النوعArticle
رقم المجلد279
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة