• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design of composite rectangular tubes for optimum crashworthiness performance via experimental and ANN techniques

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263822321012976-main.pdf (8.653Mb)
    Date
    2022
    Author
    Kazi, M.-K.
    Eljack, F.
    Mahdi, E.
    Metadata
    Show full item record
    Abstract
    This paper examines the crashworthiness performance of composite rectangular tubes using experimental and artificial neural network (ANN) techniques. Based on experimentally obtained values of different crashworthiness parameters under various loading conditions, ANN models are constructed to identify the optimum cross-sectional aspect ratio of cotton fiber/epoxy laminated composite to achieve the targeted mechanical properties such as load carrying and energy absorption capability. Experimental findings show that axially and laterally loaded rectangular tubes were significantly affected by their aspect ratio. Furthermore, the predictions obtained from the ANN models showed consistency with the experimental data. In addition, the developed ANN captured the complicated nonlinear relationship among crashworthiness parameters to obtain insight into the practical design of the composite materials. 2021 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2021.114858
    http://hdl.handle.net/10576/47362
    Collections
    • Chemical Engineering [‎1272‎ items ]
    • Mechanical & Industrial Engineering [‎1508‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video