• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal filler content for cotton fiber/PP composite based on mechanical properties using artificial neural network

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0263822320325800-main.pdf (1.651Mb)
    Date
    2020
    Author
    Kazi, Monzure-Khoda
    Eljack, Fadwa
    Mahdi, E.
    Metadata
    Show full item record
    Abstract
    In this paper, a machine learning-based approach has been proposed to integrate artificial intelligence during the designing of fiber-reinforced polymeric composites. With the help of the proposed approach, an artificial neural network (ANN) model has been developed to achieve the targeted filler content for cotton fiber/polypropylene composite while satisfying the required targeted properties. Previously obtained experimental data sets were trained on the TensorFlow backend using Keras library in Python, followed by hyperparameter tuning and k-fold cross-validation method for acquiring a better performing model to predict the amount of targeted filler content. The developed approach proved to be very efficient and reduced the time and effort of the material characterization for numerous samples, and it will help materials designers to design their future experiments effectively. The developed approach in this paper can be extended for other composite materials if the necessary experimental data are available to train the ANN model.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2020.112654
    http://hdl.handle.net/10576/47366
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video