• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal filler content for cotton fiber/PP composite based on mechanical properties using artificial neural network

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0263822320325800-main.pdf (1.651Mb)
    التاريخ
    2020
    المؤلف
    Kazi, Monzure-Khoda
    Eljack, Fadwa
    Mahdi, E.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, a machine learning-based approach has been proposed to integrate artificial intelligence during the designing of fiber-reinforced polymeric composites. With the help of the proposed approach, an artificial neural network (ANN) model has been developed to achieve the targeted filler content for cotton fiber/polypropylene composite while satisfying the required targeted properties. Previously obtained experimental data sets were trained on the TensorFlow backend using Keras library in Python, followed by hyperparameter tuning and k-fold cross-validation method for acquiring a better performing model to predict the amount of targeted filler content. The developed approach proved to be very efficient and reduced the time and effort of the material characterization for numerous samples, and it will help materials designers to design their future experiments effectively. The developed approach in this paper can be extended for other composite materials if the necessary experimental data are available to train the ANN model.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2020.112654
    http://hdl.handle.net/10576/47366
    المجموعات
    • الهندسة الكيميائية [‎1272‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video