عرض بسيط للتسجيلة

المؤلفTahir, Anas M.
المؤلفMutlu, Onur
المؤلفBensaali, Faycal
المؤلفWard, Rabab
المؤلفGhareeb, Abdel Naser
المؤلفHelmy, Sherif M. H. A.
المؤلفOthman, Khaled T.
المؤلفAl-Hashemi, Mohammed A.
المؤلفAbujalala, Salem
المؤلفChowdhury, Muhammad E. H.
المؤلفAlnabti, A.Rahman D. M. H.
المؤلفYalcin, Huseyin C.
تاريخ الإتاحة2023-09-12T06:49:10Z
تاريخ النشر2023-07-19
اسم المنشورJournal of Clinical Medicine
المعرّفhttp://dx.doi.org/10.3390/jcm12144774
الاقتباسTahir, A. M., Mutlu, O., Bensaali, F., Ward, R., Ghareeb, A. N., Helmy, S. M., ... & Yalcin, H. C. (2023). Latest Developments in Adapting Deep Learning for Assessing TAVR Procedures and Outcomes. Journal of Clinical Medicine, 12(14), 4774.
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47446
الملخصAortic valve defects are among the most prevalent clinical conditions. A severely damaged or non-functioning aortic valve is commonly replaced with a bioprosthetic heart valve (BHV) via the transcatheter aortic valve replacement (TAVR) procedure. Accurate pre-operative planning is crucial for a successful TAVR outcome. Assessment of computational fluid dynamics (CFD), finite element analysis (FEA), and fluid–solid interaction (FSI) analysis offer a solution that has been increasingly utilized to evaluate BHV mechanics and dynamics. However, the high computational costs and the complex operation of computational modeling hinder its application. Recent advancements in the deep learning (DL) domain can offer a real-time surrogate that can render hemodynamic parameters in a few seconds, thus guiding clinicians to select the optimal treatment option. Herein, we provide a comprehensive review of classical computational modeling approaches, medical imaging, and DL approaches for planning and outcome assessment of TAVR. Particularly, we focus on DL approaches in previous studies, highlighting the utilized datasets, deployed DL models, and achieved results. We emphasize the critical challenges and recommend several future directions for innovative researchers to tackle. Finally, an end-to-end smart DL framework is outlined for real-time assessment and recommendation of the best BHV design for TAVR. Ultimately, deploying such a framework in future studies will support clinicians in minimizing risks during TAVR therapy planning and will help in improving patient care.
راعي المشروعQatar National Research Fund - grant No. NPRP13S-0108-200024.
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعcardiovascular hemodynamics
computationalmodeling
deep learning
graph convolutional network
transcatheter aortic valve replacement
transcatheter aortic valve implantation
العنوانLatest Developments in Adapting Deep Learning for Assessing TAVR Procedures and Outcomes
النوعArticle
رقم العدد14
رقم المجلد12
ESSN2077-0383
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة