عرض بسيط للتسجيلة

المؤلفKeleş, Onur
المؤلفTekalp, A. Murat
المؤلفMalik, Junaid
المؤلفKιranyaz, Serkan
تاريخ الإتاحة2023-09-24T08:57:19Z
تاريخ النشر2021
اسم المنشورProceedings - International Conference on Image Processing, ICIP
المصدرScopus
الرقم المعياري الدولي للكتاب2381-8549
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICIP42928.2021.9506260
معرّف المصادر الموحدhttp://hdl.handle.net/10576/47892
الملخصIt has become a standard practice to use the convolutional networks (ConvNet) with RELU non-linearity in image restoration and super-resolution (SR). Although the universal approximation theorem states that a multi-layer neural network can approximate any non-linear function with the desired precision, it does not reveal the best network architecture to do so. Recently, operational neural networks (ONNs) that choose the best non-linearity from a set of alternatives, and their "self-organized" variants (Self-ONN) that approximate any non-linearity via Taylor series have been proposed to address the well-known limitations and drawbacks of conventional ConvNets such as network homogeneity using only the McCulloch-Pitts neuron model. In this paper, we propose the concept of self-organized operational residual (SOR) blocks, and present hybrid network architectures combining regular residual and SOR blocks to strike a balance between the benefits of stronger non-linearity and the overall number of parameters. The experimental results demonstrate that the proposed architectures yield performance improvements in both PSNR and perceptual metrics.
راعي المشروعThis work was supported by TUBITAK projects 217E033 and 120C156, and a grant from Turkish Is Bank to KUIS AI Center. A. M. Tekalp also acknowledges support from Turkish Academy of Sciences (TUBA).
اللغةen
الناشرIEEE Computer Society
الموضوعConvolutional networks
Generative neurons
Hybrid networks
Operational neural networks
Self-organized networks
Super-resolution
Taylor/Maclaurin series
العنوانSELF-ORGANIZED RESIDUAL BLOCKS FOR IMAGE SUPER-RESOLUTION
النوعConference Paper
الصفحات589-593
رقم المجلد2021-September
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة