• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الإنسانيات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الإنسانيات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The impact of COVID-19 pandemic on electricity consumption and electricity demand forecasting accuracy: Empirical evidence from the state of Qatar

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    The impact of COVID-19 pandemic on electricity consumption and electricity demand forecasting accuracy Empirical evidence from the state of Qatar.pdf (15.09Mb)
    التاريخ
    2022-11-01
    المؤلف
    Abulibdeh, Ammar
    Zaidan, Esmat
    Jabbar, Rateb
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The goal of this study is to use machine-learning (ML) techniques and empirical big data to examine the influence of the COVID-19 pandemic on electricity usage and electricity demand forecasting accuracy in buildings in Qatar over time and across sectors. Furthermore, this study statistically investigates the relationship between building electricity consumption and the number of daily infected cases in the State of Qatar. The effect of the pandemic on electricity usage was quantified during various periods of the pandemic years. Around 1 million electricity meter readings per year were considered for six different types of building usage between the years 2010 and 2021. The findings indicate that there was a gap between the actual and simulated electricity consumption during the pandemic years. Furthermore, the results show that the fluctuation in electricity consumption was correlated with the number of daily infected cases in some socioeconomic sectors. The changes in the pattern of electricity consumption during the pandemic years (2020–2021) affected the accuracy of the ML models in predicting electricity consumption in 2022.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85140297548&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.esr.2022.100980
    http://hdl.handle.net/10576/47931
    المجموعات
    • أبحاث فيروس كورونا المستجد (كوفيد-19) [‎848‎ items ]
    • الإنسانيات [‎155‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video