• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of soil moisture on the response of soil respiration to open-field experimental warming and precipitation manipulation

    Thumbnail
    View/Open
    forests-08-00056-with-cover.pdf (1.081Mb)
    Date
    2017-02-25
    Author
    Li, Guanlin
    Kim, Seongjun
    Han, Seung Hyun
    Chang, Hanna
    Son, Yowhan
    Metadata
    Show full item record
    Abstract
    Soil respiration (RS, Soil CO2 efflux) is the second largest carbon (C) flux in global terrestrial ecosystems, and thus, plays an important role in global and regional C cycling; moreover, it acts as a feedback mechanism between C cycling and global climate change. RS is highly responsive to temperature and moisture, factors that are closely related to climate warming and changes in precipitation regimes. Here, we examined the direct and interactive effects of climate change drivers on RS of Pinus densiflora Sieb. et Zucc. seedlings in a multifactor climate change experiment involving atmospheric temperature warming (+3 °C) and precipitation manipulations (-30% and +30%). Our results indicated that atmospheric temperature warming induced significant changes in RS (p < 0.05), enhancing RS by an average of 54.6% and 59.7% in the control and elevated precipitation plots, respectively, whereas atmospheric temperature warming reduced RS by 19.4% in plots subjected to lower rates of precipitation. However, the warming effect on RS was influenced by soil moisture. On the basis of these findings, we suggest that atmospheric temperature warming significantly influenced RS, but the warming effect on RS may be weakened by warming-induced soil drying in water-limited environments.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85014918007&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/f8030056
    http://hdl.handle.net/10576/48251
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video