• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    LIME: Long-Term Forecasting Model for Desalination Membrane Fouling to Estimate the Remaining Useful Life of Membrane

    Thumbnail
    Date
    2023
    Author
    Eltanbouly, Sohaila
    Erradi, Abdelkarim
    Tantawy, Ashraf
    Ben Said, Ahmed
    Shaban, Khaled
    Qiblawey, Hazim
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Membrane fouling is one of the major problems in desalination processes as it can cause a severe drop in the quality and quantity of the permeate water. This paper presents a data-driven approach for long-term forecasting of fouling behavior in membrane-based desalination processes. The proposed Long-term forecastIng ModEl (LIME) consists of two intertwined machine learning models trained separately by historical operating conditions of ultrafiltration for pretreatment of reverse osmosis seawater where transmembrane pressure is used as a fouling indicator. The first model predicts the increase in fouling due to filtration. This output is fed to the second model to predict the fouling reduction due to membrane cleaning. In turn, this output is used as the initial fouling condition for predicting the next filtration cycle. The forecasted fouling is used to estimate the membrane's remaining useful life (RUL), which ends when cleaning no longer reduces the fouling below a safety threshold. Evaluation results show that the model can predict the membrane fouling for 1400 cycles with an R-squared score of 0.8. Moreover, the RUL is estimated for various thresholds with an average percentage error of 7%.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-031-36822-6_1
    http://hdl.handle.net/10576/48312
    Collections
    • Chemical Engineering [‎1196‎ items ]
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video