• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deciphering the complexities of cancer cell immune evasion: Mechanisms and therapeutic implications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2667394023000217-main.pdf (4.376Mb)
    Date
    2023-10-01
    Author
    Gupta, Ishita
    Hussein, Ola
    Sastry, Konduru Seetharama
    Bougarn, Salim
    Gopinath, Neha
    Chin-Smith, Evonne
    Sinha, Yashi
    Korashy, Hesham Mohamed
    Maccalli, Cristina
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Cancer immune evasion is one of the principal mechanisms leading to the progression and metastatization of the disease. Despite the migration and infiltration at the tumor site of immune cells, multiple factors can influence the composition of hot or “immune-sensitive” tumors and cold or “immune-resistant” tumors. Among the multiple mechanisms responsible for the make-up of the tumor microenvironment are the expression levels of major histocompatibility molecules (MHC) and of the antigen processing machinery, the metabolic network, hypoxia, and the secretion of pro-inflammatory molecules (e.g., cytokines, chemokines, and growth factors). Moreover, the different triggered pathways can mediate the reprogramming of activated, memory, effector, or regulatory/tolerogenic subtypes of immune cells (T, NK, dendritic cells, and macrophages). Recent studies have focused on the role of cancer metabolism in evading immune surveillance through the action of the active tryptophan catabolic enzyme indoleamine 2,3-dioxygenase (IDO). Immune suppression and evasion mechanisms in cancer cells are now being extensively studied with a special focus on developing immunotherapy strategies, such as the targeting of immune checkpoints (programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1), Cytotoxic T-lymphocyte antigen-4 (CTLA-4)), adoptive cell therapy or cancer vaccines. In this review, an overview of the underlying mechanisms of cancer immune evasion and the efficacy of the therapeutic targets and agents to overcome the immune escape are described.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85166953610&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.adcanc.2023.100107
    http://hdl.handle.net/10576/49188
    Collections
    • Pharmacy Research [‎1399‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video