• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Learning-Based Conjunctival Melanoma Detection Using Ocular Surface Images

    Thumbnail
    Date
    2023-01-01
    Author
    Podder, Kanchon Kanti
    Alam, Mohammad Kaosar
    Siam, Zakaria Shams
    Islam, Khandaker Reajul
    Dutta, Proma
    Mushtak, Adam
    Khandakar, Amith
    Pedersen, Shona
    Chowdhury, Muhammad E.H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The human eye could be affected with conjunctival melanoma, which indicates a fatal malignant growth of the eye. Being a very rare disease, there exists a lack of related data in the literature. Also, very few studies performed deep learning-based conjunctival melanoma detection from the ocular surface images. In response to the research gap, we created a more enriched and well-curated dataset validated by medical experts for conjunctival melanoma detection using deep learning. Furthermore, we have made our dataset available on Kaggle. In the present work, we utilized a total of seven pretrained deep learning-based classification models, that are, DenseNet161, DenseNet201, EfficientNet_B7, GoogLeNet, ResNet18, ResNet50, and ResNet152. We outperformed the prior literature in terms of assessment metrics, including different performance parameters like accuracy, precision, sensitivity, F1-score, specificity, confusion matrix, ROCcurve, and AUROC, with better improvement achieved in multi-label classification. The best AUROC and overall accuracy were found to be around 1.00 and 99.51%, respectively, for binary classification whereas these were around 0.99 and 94.42%, respectively, in case of multi-label classification, from the best performing model, EfficientNet_B7. The deep learning applications in medical images require visual interpretation of the features prioritized in decision-making, and a Grad-CAM-based visualization is added in this study to prove the effectiveness of the best-performing model. The research conducted here may make it simpler to identify conjunctival lesions using state-of-the-art deep learning models more meticulously in the future.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85166152410&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/978-981-99-3784-4_6
    http://hdl.handle.net/10576/49251
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video