• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Social Robot’s Responses to Undesired Interactions Between Children and their Surroundings

    Thumbnail
    View/Open
    Real-Time Social Robot’s Responses to Undesired Interactions Between Children and their Surroundings.pdf (888.0Kb)
    Date
    2023-04-01
    Author
    Alhaddad, Ahmad Yaser
    Cabibihan, John John
    Bonarini, Andrea
    Metadata
    Show full item record
    Abstract
    Aggression in children is frequent during the early years of childhood. Among children with psychiatric disorders in general, and autism in particular, challenging behaviours and aggression rates are higher. These can take on different forms, such as hitting, kicking, and throwing objects. Social robots that are able to detect undesirable interactions within its surroundings can be used to target such behaviours. In this study, we evaluate the performance of five machine learning techniques in characterizing five possible undesired interactions between a child and a social robot. We examine the effects of adding different combinations of raw data and extracted features acquired from two sensors on the performance and speed of prediction. Additionally, we evaluate the performance of the best developed model with children. Machine learning algorithms experiments showed that XGBoost achieved the best performance across all metrics (e.g., accuracy of 90%) and provided fast predictions (i.e., 0.004 s) for the test samples. Experiments with features showed that acceleration data were the most contributing factor on the prediction compared to gyroscope data and that combined data of raw and extracted features provided a better overall performance. Testing the best model with data acquired from children performing interactions with toys produced a promising performance for the shake and throw behaviours. The findings of this work can be used by social robot developers to address undesirable interactions in their robotic designs.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131578818&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12369-022-00889-8
    http://hdl.handle.net/10576/49567
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video