• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CNN feature and classifier fusion on novel transformed image dataset for dysgraphia diagnosis in children

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    CNN feature and classifier fusion on novel transformed image dataset for dysgraphia diagnosis in children.pdf (3.239Mb)
    التاريخ
    2023-11-30
    المؤلف
    Jayakanth, Kunhoth
    Al Maadeed, Somaya
    Saleh, Moutaz
    Akbari, Younes
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Dysgraphia is a neurological disorder that hinders the acquisition process of normal writing skills in children, resulting in poor writing abilities. Poor or underdeveloped writing skills in children can negatively impact their self-confidence and academic growth. This work proposes various machine learning methods, including transfer learning via fine-tuning, transfer learning via feature extraction, ensembles of deep convolutional neural network (CNN) models, and fusion of CNN features, to develop a preliminary dysgraphia diagnosis system based on handwritten images. In this work, an existing online dysgraphia dataset is converted into images, encompassing various writing tasks. Transfer learning is applied using a pre-trained DenseNet201 network to develop four distinct CNN models separately trained on word, pseudoword, difficult word, and sentence images. Soft voting and hard voting strategies are employed to ensemble these CNN models. The pre-trained DenseNet201 network is used for CNN feature extraction from each task-specific handwritten image data. The extracted CNN features are then fused in different combinations. Three machine learning algorithms support vector machine (SVM), AdaBoost, and Random forest are employed to assess the performance of the CNN features and fused CNN features. Among the task-specific models, the SVM trained on word data achieved the highest accuracy of 91.7%. In the case of ensemble learning, soft voting ensembles of task-specific CNNs achieved an accuracy of 90.4%. The feature fusion approach substantially improved the classification accuracy, with the SVM trained on fused features from the task specific-data achieving an accuracy of 97.3%. This accuracy surpasses the performance of state-of-the-art methods by 16%.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S0957417423012423
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2023.120740
    http://hdl.handle.net/10576/49665
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video