• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessing spatial confounding in cancer disease mapping using R

    Thumbnail
    Date
    2020
    Author
    Azevedo, Douglas R. M.
    Bandyopadhyay, Dipankar
    Prates, Marcos O.
    Abdel-Salam, Abdel-Salam G.
    Garcia, Dina
    Metadata
    Show full item record
    Abstract
    Background: Exploring spatial patterns in the context of cancer disease mapping (DM) is a decisive approach to bring evidence of geographical tendencies in assessing disease status and progression. However, this framework is not insulated from spatial confounding, a topic of significant interest in cancer epidemiology, where the latent correlation between the spatial random effects and fixed effects (such as covariates), often lead to misleading interpretation. Aims: To introduce three popular approaches (RHZ, HH and SPOCK; details in paper) often employed to tackle spatial confounding, and illustrate their implementation in cancer research via the popular statistical software R. Methods: As a solution to alleviate spatial confounding, restricted spatial regressions are constructed by either projecting the latent effect onto the orthogonal space of covariates, or by displacing the spatial locations. Popular parametric count data models, such as the Poisson, generalized Poisson and negative binomial, were considered for the areal count responses, while the spatial association is quantified via the conditional autoregressive (CAR) model. Our method of inference in Bayesian, sometimes aided by the integrated nested Laplace approximation (INLA) to accelerate computing. The methods are implemented in the R package RASCO available from the first author's GitHub page. Results: The results reveal that all three methods perform well in alleviating the bias and variance inflation present in the spatial models. The effects of spatial confounding were also explored, which, if ignored in practice, may lead to wrong conclusions. Conclusion: Spatial confounding continues to remain a critical bottleneck in deriving precise inference from spatial DM models. Hence, its effects must be investigated, and mitigated. Several approaches are available in the literature, and they produce trustworthy results. The central contribution of this paper is providing the practitioners the R package RASCO, capable of fitting a large number of spatial models, as well as their restricted versions.
    DOI/handle
    http://dx.doi.org/10.1002/cnr2.1263
    http://hdl.handle.net/10576/49805
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video