• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches

    Thumbnail
    Date
    2021
    Author
    Forsat, Masoud
    Musharavati, Farayi
    Eltai, Elsadig
    Zain, Azlan Mohd
    Mobayen, Saleh
    Mohamed, Abdeliazim Mustafa
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the current study, vibration characteristics of a three-layered rectangular microplate with Graphene nanoplatelets (GNPs)-reinforced Epoxy core which is fully bonded to piezoelectric-reinforced single-walled Carbon nanotubes (SWCNTs) patches are provided. The face sheets are subjected to the electric field and the microplate is assumed to be in a thermal environment and also, is located on the visco-Pasternak model of the elastic substrate. The GNPs and SWCNTs are dispersed through the core's and face's thickness according to the given functions. To account the shear deformation effect, tangential shear deformation theory (TGSDT) as a higher-order theory is employed and the modified strain gradient theory (MSGT) with tree independent length-scale parameters is selected to capture the size effect. Using the extended form of Hamilton's principle and variational formulation, the governing motion equations are derived and solved mathematically via Navier's scheme for simply supported edges microplate. By ensuring the validity of the results after comparing them in a simpler state with previously published ones, the effects of the most prominent parameters on the results are investigated. It is seen GNPs and CNTs dispersion patterns play an important role in the microplate vibrational behavior, as well as temperature variations. Since the under consideration microstructure can be accounted as smart structures, therefore, the outcomes of this study may help to design and create more efficient engineering structures, such as sensors and actuators and also micro/nano electromechanical systems.
    DOI/handle
    http://dx.doi.org/10.12989/anr.2021.11.2.115
    http://hdl.handle.net/10576/50260
    Collections
    • Mechanical & Industrial Engineering [‎1509‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video