The effect of post-lunch napping on mood, reaction time, and antioxidant defense during repeated sprint exercice
View/ Open
Date
2021Author
Romdhani, MohamedDergaa, Ismail
Moussa-Chamari, Imen
Souissi, Nizar
Chaabouni, Yassine
Mahdouani, Kacem
Abene, Olfa
Driss, Tarak
Chamari, Karim
Hammouda, Omar
...show more authors ...show less authors
Metadata
Show full item recordAbstract
To compare the effects of two nap opportunities (20 and 90 min) to countermeasure the transient naturally occurring increased sleepiness and decreased performances during the post-lunch dip (PLD). Fourteen highly trained judokas completed in a counterbalanced and randomized order three test sessions (control (No-nap), 20- (N20) and 90-min (N90) nap opportunities). Test sessions consisted of the running-based anaerobic sprint test (RAST), simple and multiple-choice reaction times (MCRT) and the Epworth sleepiness scale (ESS). From the RAST, the maximum (Pmax), mean (Pmean) and minimum (Pmin) powers were calculated. Blood samples were taken before and after the RAST to measure the effect of pre-exercise napping on energetic and muscle damage biomarkers and antioxidant defense. N20 increased Pmax and Pmean compared to No-nap (p < 0.001, d = 0.59; d = 0.66) and N90 (p < 0.001, d = 0.98; d = 0.72), respectively. Besides, plasma lactate and creatinine increased only when the exercise was performed after N20. Both N20 (p < 0.001, d = 1.18) and N90 (p < 0.01, d = 0.78) enhanced post-exercise superoxide dismutase activity compared to No-nap. However, only N20 enhanced post-exercise glutathione peroxidase activity (p < 0.001, d = 1.01) compared to pre-nap. Further, MCRT performance was higher after N20 compared to No-nap and N90 (p < 0.001, d = 1.15; d = 0.81, respectively). Subjective sleepiness was lower after N20 compared to No-nap (p < 0.05, d = 0.92) and N90 (p < 0.01, d = 0.89). The opportunity to nap for 20 min in the PLD enhanced RAST, MCRT performances, and antioxidant defense, and decreased sleepiness. However, the opportunity of 90 min nap was associated with decreased repeated sprint performances and increased sleepiness, probably because of the sleep inertia.
Collections
- Physical Education [132 items ]