• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A combined method of optimized learning vector quantization and neuro-fuzzy techniques for predicting unified Parkinson's disease rating scale using vocal features

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2024-06-01
    المؤلف
    Zogaan, Waleed Abdu
    Nilashi, Mehrbakhsh
    Ahmadi, Hossein
    Abumalloh, Rabab Ali
    Alrizq, Mesfer
    Abosaq, Hamad
    Alghamdi, Abdullah
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Parkinson's Disease (PD) is a common disorder of the central nervous system. The Unified Parkinson's Disease Rating Scale or UPDRS is commonly used to track PD symptom progression because it displays the presence and severity of symptoms. To model the relationship between speech signal properties and UPDRS scores, this study develops a new method using Neuro-Fuzzy (ANFIS) and Optimized Learning Rate Learning Vector Quantization (OLVQ1). ANFIS is developed for different Membership Functions (MFs). The method is evaluated using Parkinson's telemonitoring dataset which includes a total of 5875 voice recordings from 42 individuals in the early stages of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features and Motor-UPDRS, and Total-UPDRS. The method is compared with other learning techniques. The results show that OLVQ1 combined with the ANFIS has provided the best results in predicting Motor-UPDRS and Total-UPDRS. The lowest Root Mean Square Error (RMSE) values (UPDRS (Total)=0.5732; UPDRS (Motor)=0.5645) and highest R-squared values (UPDRS (Total)=0.9876; UPDRS (Motor)=0.9911) are obtained by this method. The results are discussed and directions for future studies are presented. i. ANFIS and OLVQ1 are combined to predict UPDRS. ii. OLVQ1 is used for PD data segmentation. iii. ANFIS is developed for different MFs to predict Motor-UPDRS and Total-UPDRS.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85182365825&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.mex.2024.102553
    http://hdl.handle.net/10576/51178
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video