A combined method of optimized learning vector quantization and neuro-fuzzy techniques for predicting unified Parkinson's disease rating scale using vocal features
المؤلف | Zogaan, Waleed Abdu |
المؤلف | Nilashi, Mehrbakhsh |
المؤلف | Ahmadi, Hossein |
المؤلف | Abumalloh, Rabab Ali |
المؤلف | Alrizq, Mesfer |
المؤلف | Abosaq, Hamad |
المؤلف | Alghamdi, Abdullah |
تاريخ الإتاحة | 2024-01-25T10:38:11Z |
تاريخ النشر | 2024-06-01 |
اسم المنشور | MethodsX |
المعرّف | http://dx.doi.org/10.1016/j.mex.2024.102553 |
الاقتباس | Zogaan, W. A., Nilashi, M., Ahmadi, H., Abumalloh, R. A., Alrizq, M., Abosaq, H., & Alghamdi, A. (2024). A combined method of optimized learning vector quantization and neuro-fuzzy techniques for predicting unified Parkinson's disease rating scale using vocal features. MethodsX, 102553. |
الملخص | Parkinson's Disease (PD) is a common disorder of the central nervous system. The Unified Parkinson's Disease Rating Scale or UPDRS is commonly used to track PD symptom progression because it displays the presence and severity of symptoms. To model the relationship between speech signal properties and UPDRS scores, this study develops a new method using Neuro-Fuzzy (ANFIS) and Optimized Learning Rate Learning Vector Quantization (OLVQ1). ANFIS is developed for different Membership Functions (MFs). The method is evaluated using Parkinson's telemonitoring dataset which includes a total of 5875 voice recordings from 42 individuals in the early stages of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features and Motor-UPDRS, and Total-UPDRS. The method is compared with other learning techniques. The results show that OLVQ1 combined with the ANFIS has provided the best results in predicting Motor-UPDRS and Total-UPDRS. The lowest Root Mean Square Error (RMSE) values (UPDRS (Total)=0.5732; UPDRS (Motor)=0.5645) and highest R-squared values (UPDRS (Total)=0.9876; UPDRS (Motor)=0.9911) are obtained by this method. The results are discussed and directions for future studies are presented. i. ANFIS and OLVQ1 are combined to predict UPDRS. ii. OLVQ1 is used for PD data segmentation. iii. ANFIS is developed for different MFs to predict Motor-UPDRS and Total-UPDRS. |
راعي المشروع | The authors are thankful to the Deanship of Scientific Research under the supervision of the Scientific and Engineering Research Center (SERC) at Najran University for funding this work under the research centers funding program grant code NU/RCP/SERC/12/6. |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Learning vector quantization Motor-UPDRS Neuro-fuzzy Optimized learning rate Parkinson's disease Total-UPDRS |
النوع | Article |
رقم المجلد | 12 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
علوم وهندسة الحاسب [2402 items ]