• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees.pdf (10.20Mb)
    التاريخ
    2023-04-01
    المؤلف
    Nilashi, Mehrbakhsh
    Abumalloh, Rabab Ali
    Ahmadi, Hossein
    Samad, Sarminah
    Alghamdi, Abdullah
    Alrizq, Mesfer
    Alyami, Sultan
    Nayer, Fatima Khan
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The analysis of Electroencephalography (EEG) signals has been an effective way of eye state identification. Its significance is highlighted by studies that examined the classification of eye states using machine learning techniques. In previous studies, supervised learning techniques have been widely used in EEG signals analysis for eye state classification. Their main goal has been the improvement of classification accuracy through the use of novel algorithms. The trade-off between classification accuracy and computation complexity is an important task in EEG signals analysis. In this paper, a hybrid method that can handle multivariate signals and non-linear is proposed with supervised and un-supervised learning to achieve a fast EEG eye state classification with high prediction accuracy to provide real-time decision-making applicability. We use the Learning Vector Quantization (LVQ) technique and bagged tree techniques. The method was evaluated on a real-world EEG dataset which included 14976 instances after the removal of outlier instances. Using LVQ, 8 clusters were generated from the data. The bagged tree was applied on 8 clusters and compared with other classifiers. Our experiments revealed that LVQ combined with the bagged tree provides the best results (Accuracy = 0.9431) compared with the bagged tree, CART (Classification And Regression Tree) (Accuracy = 0.8200), LDA (Linear Discriminant Analysis) (Accuracy = 0.7931), Random Trees (Accuracy = 0.8311), Naïve Bayes (Accuracy = 0.8331) and Multilayer Perceptron (Accuracy = 0.7718), which demonstrates the effectiveness of incorporating ensemble learning and clustering approaches in the analysis of EEG signals. We also provided the time complexity of the methods for prediction speed (Observation/Second). The result showed that LVQ + Bagged Tree provides the best result for prediction speed (58942 Obs/Sec) in relation to Bagged Tree (28453 Obs/Sec), CART (27784 Obs/Sec), LDA (26435 Obs/Sec), Random Trees (27921), Naïve Bayes (27217) and Multilayer Perceptron (24163).
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85152135095&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2023.e15258
    http://hdl.handle.net/10576/51184
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video