• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Accurate prediction of dynamic viscosity of polyalpha-olefin boron nitride nanofluids using machine learning

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2405844023039233-main.pdf (3.797Mb)
    Date
    2023-05-26
    Author
    AbuShanab, Yazeed
    Al-Ammari, Wahib A.
    Gowid, Samer
    Sleiti, Ahmad K.
    Metadata
    Show full item record
    Abstract
    This study focuses on predicting the dynamic viscosity of nanofluids, specifically Polyalpha-Olefin-hexagonal boron nitride (PAO-hBN) using machine learning models. The primary goal of this research is to assess and contrast the effectiveness of three distinct machine learning models: Support Vector Regression (SVR), Artificial Neural Networks (ANN), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The main objective is the identification of a model that demonstrates the highest level of accuracy in predicting a nanofluid's viscosity namely, PAO-hBN nanofluids. The models were trained and validated using 540 experimental data points, where the mean square error (MSE) and the coefficient of determination R2 were utilized for performance evaluation. The results demonstrated that all three models could predict the viscosity of PAO-hBN nanofluids accurately, but the ANFIS and ANN models outperformed the SVR model. The ANFIS and ANN models had similar performance, but the ANN model was preferred due to its faster training and computation time. The optimized ANN model had an R2 of 0.99994, which indicates a high level of accuracy in predicting the viscosity of PAO-hBN nanofluids. The elimination of the shear rate parameter from the input layer improved the accuracy of the ANN model to an absolute relative error of less than 1.89% over the full temperature range (−19.7 °C–70 °C) compared to 11% in the traditional correlation-based model. These results suggest that the use of machine learning models can significantly improve the accuracy of predicting the viscosity of PAO-hBN nanofluids. Overall, this study demonstrated that the use of machine learning models, specifically ANN, can be effective in predicting PAO-hBN nanofluids’ dynamic viscosity. The findings provide a new perspective on how to predict the thermodynamic properties of nanofluids with high accuracy, which could have important applications in various industries.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85160535630&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2023.e16716
    http://hdl.handle.net/10576/51747
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video