• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energetic, economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power system for cancer care hospital

    View/Open
    s12273-021-0865-9.pdf (2.815Mb)
    Date
    2022-01-06
    Author
    Sleiti, Ahmad K.
    Al-Ammari, Wahib A.
    Arshad, Raiha
    El Mekkawy, Tarek
    Metadata
    Show full item record
    Abstract
    In this study, energetic, economic, and environmental analysis of solid oxide fuel cell-based combined cooling, heating, and power (SOFC-CCHP) system is proposed for a cancer care hospital building. The energy required for the hospital power, cooling, and heating demands was obtained based on real and detailed field data, which could serve as a reference for future works in the field. These data with a 3D model for the hospital building are constructed and created in eQUEST software to precisely calculate the energy demands of the existing system (baseline case). Then, energetic, economic, and environmental models were developed to compare and assess the performance of the proposed SOFC-CCHP system. The results show that the proposed system can cover about 49% to 77% of the power demand of the hospital with an overall efficiency of 78.3%. Also, the results show that the levelized cost of electricity of the system and its payback period at the designed capacity of the SOFC is 0.087 $/kWh and 10 years, respectively. Furthermore, compared to the baseline system of the hospital, the SOFC-CCHP reduces the CO2 emission by 89% over the year. The sensitivity analysis showed that a maximum SOFC efficiency of 52% and overall efficiency of 80% are achieved at cell operating temperature of 1027 °C and fuel utilization factor of 0.85.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122522704&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s12273-021-0865-9
    http://hdl.handle.net/10576/51756
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video