• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flare gas-to-power by direct intercooled oxy-combustion supercritical CO2 power cycles

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0016236121016872-main.pdf (6.616Mb)
    Date
    2021-09-14
    Author
    Sleiti, Ahmad K.
    Al-Ammari, Wahib A.
    Aboueata, Khaled M.
    Metadata
    Show full item record
    Abstract
    With more than 150 billion m3 of gases annually flared around the world, gas flaring is a major source of greenhouse gas emissions that contaminates the environment with more than 400 Mt CO2/year. Therefore, utilizing the flared gases efficiently becomes inescapable and one of the most promising utilization technologies is using Gas-to-Power (GTP). However, most of the available GTP technologies are still using conventional power cycles that have limited efficiencies and produce high-level of emissions. Herein, we use direct oxy-combustion (DOC) supercritical CO2 (sCO2) power cycle, instead, to realize the desired no flaring-no emissions solution. Two innovative flared-intercooled sCO2 power cycles that utilize flare gases and natural gas as fuel are introduced. In the first flared power cycle (FPC1), the flare gases are mixed with the natural gas before being combusted in the DOC. While in the second cycle (FPC2), the flare gases are used to perform a reheating process for the exhaust flow of the primary heater (DOC) after being partially expanded in a high-pressure turbine. Comprehensive energetic, exergetic, exergoeconomic, levelized cost of electricity (LCOE), and multi-objective optimization analyses are conducted for each configuration over practical ranges of operating conditions for six flare gas samples that significantly differ in their composition and specifications. A minimum LCOE of 5.02¢/kWh is achieved by sweet flare gas sample in FPC1 at Tmax of 731 °C, Pmax of 300 bar, Pmin of 40 bar, Tmin of 32 °C, and Ẇnet of 50 MW with energy efficiency of 45.10%. At the optimized conditions, FPC1 and FPC2 show superior energetic and economic performances compared to indirect-combustion power cycles, however, indirect combustion of flare gases may perform better than FPC2 at low capacities and therefore recommended for future work.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85114780100&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.fuel.2021.121808
    http://hdl.handle.net/10576/51763
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video